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Lyotropic colloidal and macromolecular liquid
crystals

By HN. W. LERRKERKERKER AND (. J. VROEGE

Van ’t Hoff Laboratory, Utrecht University, Padualaan 8, 3584 CH Utrecht,
The Netherlands

We review the theory of the isotropic—nematic phase transition for solutions of thin
hard rods and semi-flexible chain molecules along with the extensions to polydisperse
systems and soft interactions. The occurrence of more highly ordered liquid crystal
phases (smectic, columnar) in concentrated solutions of colloids and macromolecules
is discussed briefly. Experimental results for a number of carefully studied uncharged
and charged colloids and macromolecules are compared to theoretical results.

1. Introduction

In this paper we present a brief overview of theory and experiments on liquid crystal
phases which appear in solutions of elongated colloidal particles or stiff polymers. In
the 40s Onsager (1942, 1949) presented his theory of the isotropic-nematic transition
of a monodisperse system of thin hard rods, which was published in his seminal paper
of 1949. Onsager showed that the isotropic-nematic transition can be explained on
the basis of merely two-particle interactions represented by the second virial term in
an expansion of the free energy of the system. Although the direct relevance of the
Onsager theory for the explanation of experiments is rather limited, being restricted
to low volume fractions of perfectly rigid very long rods, its extensions by
introducing polydispersity, electrostatic interactions and semi-flexibility and
developments for higher volume fractions have been applied with good results to
polymer and colloidal solutions.

We describe the Onsager theory in some detail in §2. The effects of polydispersity,
electrostatic and attractive interactions are described in §§3-5. For the applications
of virial theories a strong impediment has been its limitation to rigid particles. This
has changed with the extension to semi-flexible (wormlike chain) polymers by
Khokhlov & Semenov (1981, 1982) which is treated in §6, along with alternative
formulations which provide a clear physical insight. Finally in §7 we compare the
theory to experimental results on a number of selected systems representative for
neutral and charged rigid rod-like colloids and semi-flexible macromolecules.

2, Liquid crystal phase transitions in dispersions of thin hard rods
(@) The isotropic—nematic transition
As alluded to in the introduction our starting point in this review is Onsager’s
theory for the isotropic-nematic phase transition in dispersions of thin hard rods.

This theory is based upon the following second virial approximation for the free
energy of N rigid hard rods with length L and diameter D(L/D > 1) in a dispersion

with volume V: AF[f]/NkT = const. +Inc+ o[ f]+co[f]. 1)
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420 H.N. W. Lekkerkerker and G. J. Vroege

Here f(2) is the orientation distribution function which gives the probability of
finding a rod with an orientation characterized by solid angle €. This distribution
function must be normalized :

jf(Q) de = 1. 2)

The (dimensionless) concentration ¢ is defined as follows:
c=iL*DN/V. (3)
The quantity o[f] is related to the orientational entropy,

olf) =~ = [f@misnenag. @

The contribution cp[ f]is also entropic in nature namely the second virial contribution
to the excluded volume,

o1 =2 [ [siny@. 2@ @) a0a2. )

where y(£2,£2') is the angle between two rods with orientations 2 and €.

The isotropic-nematic transition originates from a competition between these two
types of entropy: for low concentrations the orientational entropy dominates and is
maximized by an isotropic distribution, whereas for high concentrations the
excluded volume term becomes more important which favours a nematic dis-
tribution. In the isotropic phase all orientations are equally probable which implies
in view of the normalization condition (2):

fiso(g) = 1/4:7[ (6)
This immediately leads to
Oiso =0, pigo =1, (7)
and therefore the free energy in the isotropic phase takes the form,
AF°/Nkg T = const. +1Inc+-c. (8)

To treat the nematic phase we must first minimize the free energy with respect to the
orientation distribution function f. This can be done formally considering AF as a
functional of f while taking into account the normalization condition (2) by adding
A" [f(£2)dR (A" being a Lagrange undetermined multiplier) and then minimizing the
resultmg expression. This means the functional derivative must be 0 or

S (AFLfT\ _

Sf( wir ) = ®)
An alternative route is to choose a (normalized) trial function with one or more
variational parameters and then minimize the free energy with respect to these

parameters. For illustrative purposes we shall use a gaussian distribution function
(Odijk 1986) here

J(0) ~ (a/4m) exp (—36?) 0<0<3m, "

~ (a/4m)exp (—3a(m—0)?) m<O< . (10)

Phil. Trans. R. Soc. Lond. A (1993)
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Using the gaussian distribution one obtains to leading order (large o)
o(a) ~Ina—1, (11)
pla) ~ 4/ (na). (12)

Substituting these results in equation (1) yields the following expression for AF valid
for large «:

AF(a)/NET ~ const.+Ina—1+4c¢/+/(na). (13)

Minimizing this expression with respect to a gives
a~ 4c?/m. (14)
and thus AF™™ [Nk, T ~ const. +3Inc+1In (4/m)+ 1. (15)

The treatment given above is only valid for o sufficiently large, say o > 10.
Comparing the free energies of the isotropic and nematic phase we note that AFe™
becomes smaller than AF™° for ¢ > 4.03 which indicates the possibility of a phase
transition. To be in mechanical and chemical equilibrium the isotropic and nematic
phase must have the same osmotic pressure and the same chemical potential

IT0(cy) = IT™(c,.),  w'™(c;) = u"*™(cy). (16)
Using the well-known thermodynamic relations
II=— (aAF/aV)N, Ty M= (OAF /ON)y, T, g (17)

where y, is the chemical potential of the solvent, one obtains (using the free energy
expressions (8) and (13) for the isotropic and nematic phase) the following coexistence
conditions:

c;(1+¢,) =3c,, Inc;+2¢,=3Inc,+1In(4/n)+3. (18)
From this we find the following coexisting concentrations (Odijk 1986):
¢, =3.45, ¢, =512, (19)
implying (via equation (14)),
a = 33.4, (20)

which is reasonably large (thus justifying the use of the gaussian trial function).
Finally, the usual measure of the ordering in the nematic phase is the nematic order
parameter given by

S = {Py(cos0)) = (Ecos?0—1> ~ {1—26*> ~ 1—3/a = 0.910. (21)
Here we have used that for a gaussian distribution function asymptotically
O*) ~2/a. (22)

The accuracy of the results obtained here with the gaussian distribution function can
be assessed by comparing them with the values obtained by an accurate numerical
calculation (Lekkerkerker et al. 1984)

¢, =3.290, ¢, =4.191, S=0.7922. (23)

Onsager’s (second virial) theory of the isotropic-nematic transition is accurate for
L/D » 1 (and in fact it is an exact theory for L /D — o). The question then arises,
‘how long should the rods be for the theory to have quantitative validity?’ To
quantify the necessary length Straley (1973) considered the first correction term (the

Phil. Trans. R. Soc. Lond. A (1993)
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third virial contribution) to the Onsager theory. Straley estimates that up to
L/D = 20 the contribution of the third virial term to the free energy (evaluated at the
transition density) is at least comparable to the contribution of the second virial term.
For L/D values as high as 100 he finds that the contribution of the third virial term
is still about 10 % of the second term. Using simulation results for the higher virial
coefficients of hard spherocylinders (Frenkel 1987a) it turns out that Straley’s
estimate is remarkably accurate for L/D = 100 but that for the lower L/D values he
is slightly too pessimistic about the quantitative accuracy of the Onsager theory. For
example for L /D = 10 the contribution of the third virial term is certainly not more
than 50 % of that of the second virial term. Furthermore simulation results indicate
that — whereas the contribution of B, remains substantial up to L/D = 10%—the
contributions of the higher virial terms decrease very quickly with increasing
elongation. This means that for intermediate elongations the incorporation of the
third virial contribution in the Onsager theory of the isotropic-nematic phase
transition suffices to make the theory quantitatively accurate. Recent calulations by
Tjipto-Margo & Evans (1990) show that this is indeed the case for length-to-breadth
ratios of 10 while even for length-to-breadth ratios as small as 5 incorporation of the
third virial contribution leads to results that lie only about 10 % above Monte Carlo
results.

For elongations below five the second and third virial terms do not suffice to make
the theory for the isotropic—nematic phase transition quantitatively accurate. In fact
it may be surmized that all higher virial coefficients have to be somehow incorporated
in the theory. Unfortunately at the present time the statistical mechanics of fluids
of rod-like particles is not sufficiently well developed to provide confident answers on
how to do this. Nevertheless a number of interesting attempts have been made to
incorporate the higher virial coefficients, which we recently reviewed (Vroege &
Lekkerkerker 1992).

(b) Transitions to smectic and crystal phases

Onsager (1949) already mentioned the possibility that in dispersions of thin hard
rods other types of anisotropic phases such as crystals and smectic liquid crystals
might occur. This suggestion did not receive much attention for a long time. Indeed
the statistical mechanical calculations for phase transitions involving these phases,
which exhibit periodic variations in the density in one (smectic) or three (crystal)
dimensions, are much more difficult than those for the isotropic-nematic phase
transition. This is a situation where computer simulations turned out to be of great
agsistance. Over the last 10 years Frenkel and coworkers (Frenkel et al. 1984, 1988;
Frenkel & Mulder 1985; Frenkel 1987 a, b, 1988, 1989; Allen et al. 1989; Veerman &
Frenkel 1990) have reported extensively on simulations of phase behaviour for both
hard ellipsoids of revolution and hard spherocylinders. For further details see Allen
(this volume), where computer simulations of hard core models are reviewed.

3. Liquid crystal phase transitions in polydisperse dispersions of
thin hard rods

(@) The isotropic—nematic transition

In an experimental situation rigid colloidal particles will hardly ever be truely
monodisperse. This may have rather strong effects on the isotropic-nematic phase
transition. Onsager (1949) already hinted at this in his original paper and even

Phil. Trans. R. Soc. Lond. A (1993)
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devoted an appendix to calculating the required integrals in bidisperse systems for
his choice of the orientational distribution function. This problem was attacked by
one of us and coworkers (Lekkerkerker et al. 1984) with numerical calculations based
on series expansions of the orientational distribution function. Several interesting
results like a strong fractionation effect (with the longer rods going preferentially to
the nematic phase) and a widening of the biphasic gap emerged from these
calculations. A few years ago Birshtein et al. (1988), using the same method, also
located a triphasic (one isotropic and two nematic phases) and nematic-nematic area
in a bidisperse system with length ratio 5, which were not detected by Lekkerkerker
et al. (1984).

The above mentioned calculations are all based upon numerical procedures and
consequently tend to obscure the physical mechanism involved. For this reason an
analytical theory may be helpful for a better understanding. Like in the monodisperse
case the gaussian distribution function allows one to make such analytical
calculations for the bidisperse case (Odijk & Lekkerkerker 1985). Extending
Onsager’s treatment for the monodisperse case to bidisperse systems, the free energy
of N, rigid rods with length L, and diameter D and N, rigid rods with the same
diameter and a (larger) length L, in a dispersion with volume V can be written as

AF(f1,fol/ N +N,) kg T = const.+Inc+ (1 —x) In (1 —x)
+rlnae+ (1—2) o, +xo,+c[(1 —x)? pyy +22(1 — ) gpyp + 22¢%005].  (24)
Here ¢ = L,/L, is the length ratio of the longer and the shorter rods, x = N,/(V, +N,)
is the mole fraction of the longer rods and c is the dimensionless concentration

defined as
¢c=inLiD(N,+N,)/V. (25)

The quantities o; and p;;, are the appropriate generalizations of the corresponding
terms for the monodisperse case (equations (4) and (5)). In the isotropic phase they
have again the values,

0;=0, pp=1, j k=12, (26)

and thus the free energy takes the form
AF's°/(N, +N,) kg T = const.+Inc+ (1—2)In (1 —z) +xInx+¢((1 —x)+qx)%.  (27)

Using in the nematic phase for the orientation distribution functions f; and f,
gaussians with parameters o, and o, one now obtains the following expressions

o;~Ina;—1, (28)

Piic ~ 4y + o)t/ (2m)i o o, (29)

Using these expressions in equation (24) and minimizing with respect to a, gives us
Imiclad = (1—x)+ 2igh(Q) (30)

with definitions Q=ay/a, (31)
MQ) = Qig(Q) = (@/Q+ 1)k (32)

A similar equation as (30) is obtained by minimizing the free energy with respect to
&, ; both equations may be combined to obtain an expression only involving the ratio
of both as

@ = glag+2¥(Q) (1 —2)]/[22(Q) g + (1 —)]. (33)
Phil. Trans. R. Soc. Lond. A (1993)
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(L, /D)o,
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Figure 1. Phase diagrams for a bidisperse system of rigid hard rods in terms of volume fractions

¢, and ¢, with length ratios (a) ¢ = 2.5, (b) ¢ = 3.5. To avoid the need to fix aspect ratio L; /D, both

volume fractions were multiplied by this number. Thick lines indicate phase boundaries, thin lines
represent tie lines connecting coexisting phases.

From this equation it follows that ¢ only depends on the mole fraction  and not on
the concentration c¢. This implies that the concentration dependence of the as
remains quadratic like in the monodisperse case, which in turn leads to an excluded
volume term in the free energy which does not depend on ¢ (like in the monodisperse
case). In fact this term turns out to be simply 2(¥, +N,) kT and the free energy takes
the form

AFme™ /(N +Ny) kg T' = const. +3Ine+1In (4/n)+ 1+2lnz+ (1—2)In (1—2)
+2In[(1—2)+2i2gh(Q)] +2In Q. (34)

To locate phase transitions we must solve the coexistence conditions equating the
osmotic pressure and chemical potentials in the coexisting phases. These can be
obtained from the free energy expressions (27) and (34). This leads to surprisingly
simple coexistence relations which give rise to different phase behaviour depending
on the length ratio (Vroege & Lekkerkerker 1993).

(i) 1<qg<3.1672

For low concentrations the isotropic phase is stable whereas for high concentrations
the nematic phase is stable. These two monophasic regions are separated by a
biphasic isotropic-nematic region. This biphasic region is wider than in the
monodisperse case (the more so with increasing ¢). In addition there is a strong
fractionation effect with the longer rods collecting preferentially in the anisotropic
phase. All these features appear in figure 1@ where the phase diagram for ¢ = 2.5 in
terms of volume fractions ¢; and ¢, is represented.

(i) ¢ > 3.1672

Now a three-phase region in which an isotropic phase coexists with two nematic
phases as well as three biphasic regions (two isotropic—nematic coexistence regions
and a region where two nematic phases coexist) appear in the phase diagram. This

Phil. Trans. R. Soc. Lond. A (1993)
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is illustrated in figure 15 where the phase diagram for ¢ = 3.5 is represented.
Remarkably the underlying mechanism for the nematic—nematic phase transition
does not involve changes in excluded volume but a balance between orientational
entropy and entropy of mixing (Vroege & Lekkerkerker 1993).

(b) Liquid crystalline phases with partial translational order

Very little is known about the influence of length polydispersity on the formation
of liquid crystalline phases with partial translational order. Sluckin (1989) extended
the work of Mulder (1987) on the nematic—smectic transition in a monodisperse
system of parallel hard rods to a polydisperse system of such rods. He showed that
the smectic transition is postponed to higher densities and estimated that for
L—=LLY)% [{LY2 > 0.09 all smecticity will be destroyed. Recently Stroobants
(1992) presented Monte Carlo simulations of binary mixtures of hard parallel
spherocylinders with length-to-width ratios L, /D = 1.0 and L, /D ranging from 1.3 to
2.1. For L,/D > 1.6 a thermodynamically stable columnar phase is observed which
is not formed by the monodisperse component separately. The nematic—smectic
transition, which is postponed by increasing the L,/D ratio, is eventually preempted
by a nematic—columnar transition for L,/D > 1.9 showing that in these mixtures
bidispersity favours columnar order over smectic order.

4. Charged rods

In the preceding sections we only considered hard core interactions, to which we
will now add electrostatic repulsion. When the rods are charged there is an additional
soft repulsion because of the interaction between the electric double layers of the
polyelectrolytes. Onsager (1949) already indicated that the effect of the electrostatic
interaction will be equivalent to an increase of the effective diameter. Many years
later Stroobants et al. (1986) noted that this is not the only effect of the electrostatic
interaction. The electrostatic repulsion depends on orientation and thus the effect of
the electrostatic repulsion will be different in the isotropic phase from that in the
nematic phase. In the remainder of this section we closely follow the treatment for
charged rods given in Stroobants et al. (1986).

For the evaluation of the free energy we need to know the potential of mean force
w of this interaction. Although the potential of mean force for two charged rods is,
in general, very difficult to evaluate, we are helped by the fact that we only need to
know the Mayer function @ = exp (—w/k7) — 1. The Mayer function is insensitive to
the exact form of the potential when w/k7' > 1 in which case @ ~ —1 and its
contribution to the second virial term in the free energy is always the same. This
implies that we only need to know an accurate form of the potential of mean force
for configurations where the outer parts of the double layers overlap. In that case we
can approximate w by the interaction between two effective line charges in the
Debye—Hiickel approximation which is well known (Brenner & Parsegian 1974;
Stigter 1977; Fixman & Skolnick 1978)

w/ kT = A e **/siny (35)
with A = 212, Q. (36)

Here x is the shortest distance between the two lines, y is their mutual angle, v, is
the (effective) linear charge density (i.e. number of charges per unit length), k! is the

Phil. Trans. R. Soc. Lond. A (1993)
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Ca

6 nematic
¢

4

¢ isotropic
2 -
0 T 1
0 0.25 0.5
h

Figure 2. The effect of electrostatic twisting on the isotropic-nematic phase transition. Note
that we plot effective concentration ¢ against A.

Debye screening length and @ is the Bjerrum length e?/4mne, kT with e the dielectric
permittivity. For details on how to relate vy, to the relevant characteristics of the
polyelectrolyte (surface charge density, diameter, ionic strength) we refer to the work
of Stroobants ef al. (1986). With expression (35) it is possible to evaluate the free
energy in the second virial approximation leading to

AF[f1/NkT = const. +Inc+a[f1+c(pLf]1+ ry[f]). (37)

Here o[ f] and p[f] have the usual meaning. The dimensionless concentration c¢ is now
defined as in equation (3) but with the diameter replaced by the effective diameter

Dy =D+«(Ind" +cz+1In2-1), (38)

where ¢z = 0.577215 is Euler’s constant and A" = 4 e7*P. The second term on the
right-hand side of (38) represents the increase of the effective diameter due to the
electrostatic repulsion between the rods. In addition to the larger effective diameter
the electrostatic interaction shows up in the extra term

7fl= %jj[-—sin'yln (siny)— (In2—1)siny] f(£2) f(£2') dQ2 d2’, (39)

which is called the twisting effect as it originates from the factor (siny)™ in equation
(35). The relative importance of this effect is determined by the parameter

h = (KDegy)™". (40)

Stroobants et al. (1986) determined the isotropic-nematic phase transition from the
free energy (37). As the scaled concentration now is based on the larger effective
diameter the phase transition is shifted to lower particle number densities. On the
other hand the nematic phase is destabilized by the twisting effect: charged rods want
to be perpendicular. This second effect of charge is seen in figure 2. However, in
general the stabilizing effect on the nematic state of a larger effective diameter
dominates the destabilizing twisting effect.

Further developments of the effect of electrostatic interactions on the iso-
tropic—nematic phase transitions in dispersions of rigid rodlike polyelectrolytes have

Phil. Trans. R. Soc. Lond. A (1993)
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been given by several authors. Sato & Teramoto (1991) (also see Sato et al. 1990)
incorporated end effects of the electrostatic interaction and took into account that
the different concentrations of polyelectrolyte rods in the coexisting isotropic and
nematic phase will lead to different salt concentrations in these phases (Donnan
effect) and thus to different Debye screening lengths. Nyrkova & Khokhlov (1986)
presented theoretical evidence for the occurrence of two nematic phases of different
degrees of order under certain special conditions. Deutsch & Goldenfeld (1982a, b)
have given a treatment for the case where the hard core diameter is zero and the
isotropic-nematic transition is solely caused by the long-range electrostatic
interactions between infinitely thin needles.

5. Attractive interactions

To treat the effect of attractive interactions on the isotropic-nematic phase
transition satisfactorily is rather more delicate than the incorporation of electrostatic
repulsion. This stems from the fact that in a solution of rodlike particles the
translational degrees of freedom are strongly coupled to their orientational degrees
of freedom. Since parallel configurations show the largest attraction these
configurations dominate the problem whenever two rods approach each other. The
orientational bias exerted by repulsive interactions (hard core, electrostatic) is a
great deal weaker.

So far the effect of attractions has been incorporated on the level of a van der
Waals mean field theory (Gelbart & Barron 1977 ; Cotter 1977; Khokhlov & Semenov
1985). In these theories the effect of attractions is included in the free energy by
means of a concentration dependent mean field potential of the form

U, = — Uy ¢ —u, c{Py(cos 0)) Py(cos )

with u, and u, unspecified constants. Whereas the work of Gelbart & Barron (1977)
and Cotter (1977) was directed towards thermotropic liquid crystals, Khokhlov &
Semenov (1985) specifically considered the effect of attractive interactions in
dispersions of rodlike particles. For the hard core part of the free energy one must
now include higher virial terms since in a situation with many nearly parallel
configurations the second virial term no longer exceeds the higher virial terms.
Khokhlov & Semenov do this by using the Parsons approach (Parsons 1979) which
may be considered an extension of the semi-empirical Carnahan—Starling equation
for hard spheres to the case of rodlike particles. They find three different scenarios
for the phase behaviour which are schematically illustrated in figure 3. For large L/D
ratios they predict that the attractive interaction leads to two nematic phases with
different concentrations and order parameters and for low L/D ratios the attractive
interaction leads to two isotropic phases (a ‘dilute’ phase and a ‘concentrated’
phase, the equivalent of the gas and the liquid phase in an atomic system). For
intermediate L/D ratios there is just an isotropic and a nematic phase. The
possibility that attractive interactions may give rise to two nematic phases was
already predicted long ago by Flory (1956), using a lattice theory.

Given the subtle nature of the effect of attractive interactions in a solution of rod-
like particles one may wonder whether a treatment on the level of the van der Waals
mean field approximation can be at all satisfactory. Van der Schoot & Odijk (1992)
have shown that as soon as attractive interactions mildly influence the second virial
contribution the effect on the third virial coefficient is considerable. This casts doubt

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

3~
olm
~ =
)= O
=0
= w

PHILOSOPHICAL
TRANSACTIONS

p

THE ROYAL A

A \\
VN

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

OF

OF

Downloaded from rsta.royalsocietypublishing.org

428 H.N. W. Lekkerkerker and G. J. Vroege
() ;
I/
(a) (b) — ™
! ,',. - / Iy I
T \ / ~ 7/ cP
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Figure 3. Schematic phase diagrams for dispersions of rigid rods with attractive interactions
showing concentration of the rods against inverse temperature for (a) L/D =~ 50, (b) L/D = 5, (c)
L/D = 2. Tie lines are shown in the two-phase regions. I, I, and I, refer to isotropic fluid phases
and N, N,, N, to nematic liquid crystal phases. In (a) and (c) the critical point (CP) and triple point
(bold line marked TP) are also indicated. (After Khokhlov & Semenov 1985.)

on the use of virial expansions for this case and may be at the origin of the strong
tendency towards gelation in solutions of rodlike particles on lowering the
temperature.

6. Liquid crystal phase transitions in solutions of semi-flexible molecules
(@) Introduction

As indicated in the preceding the Onsager theory is at the least conceptually very
important for understanding lyotropic liquid crystals. Besides extensions with effects
of polydispersity, charge, etc., the incorporation of the influence of (slight)
fluctuations of the molecules has appeared to be essential to explain experiments
with stiff polymers. On transition to an orientationally ordered phase, chain
molecules not only lose orientational entropy but the number of accessible
conformations is constricted at the same time. It took a long time since Onsager
before this effect was taken into due account, starting around 10 years ago
(Khokhlov & Semenov 1981).

Before discussing the various methods to describe the loss of entropy of confined
chains we shall first briefly sketch the wormlike chain model of a polymer (Kratky
& Porod 1949; Yamakawa 1971, 1984). This theoretical model is much used for
polymers which gradually change their direction through small fluctuations in bond
lengths and angles. The polymer is considered to be a continuous elastic line which is
described by its direction (unit) vector #(s) at each point s (measured along its
contour). A measure for the chain stiffness is its persistence length P which represents
the length scale on which a chain loses its original direction

Cl(s)-d(s+As)) = exp (—|As|/P),

where (...} indicates an average over all chain conformations. The conformational
energy of a free wormlike chain may be formulated in terms of its bending elastic

(41)

energy
L (0d(s)\? L (0%r(s))?
Ubend =%€f0 ( ds ) ds =%€f0 ( Os? ) d8> (42)
where bending elastic constant ¢ is related to the persistence length
e=PkyT. (42%)
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(b) Conformational free energy: Khokhlov—Semenov theory

The method applied by Khokhlov & Semenov (1981, 1982) leads to an expression
for the conformational free energy as a functional of an orientational distribution
function f(6) which here represents the distribution of angles 6 between the direction
i of a segment and the average direction given by director #. We will only consider
the simplest version of this theory for very long chains (L > P; also see Odijk 1986;
Vroege & Lekkerkerker 1992) where the distribution function does not depend on the
position of the segment on the chain. Khokhlov & Semenov (1981) extended a theory
by Lifshitz (Lifshitz 1968 ; Lifshitz et al. 1978) for the entropy of a spatially confined
gaussian chain to the case of an orientationally confined wormlike chain.

They start from the (unnormalized) configurational partition function Z(&', &;0, L)
for a wormlike chain with fixed end directions #(0) = &’ and é(L) = &, placed in an
external potential U, (&). This function Z may be shown to fulfil

0Z /AL = (1/2P) A, Z— (U, (@) /kT) Z, (43)

which is a kind of diffusion equation with contour length L playing the role of time.
Here direction vector @ diffuses over a unit sphere (A; is the two-dimensional
laplacian on the unit sphere) with diffusion constant (2P)! in the externally applied
potential U, (&). If Z is developed in an eigenfunction expansion it will be dominated
by the largest eigenvalue A, and its eigenfunction ¢,

20,0, L) ~ &M (i) (1), (44)
In this case orientational distribution function f(&) (= f(Q)) is simply given by
faa) ~ g3(d). (45)
By subtracting from (the extensive part of) the free energy, derived from (44),
F=—kTIn{Z)yy zs~—kTA L (46)
the internal energy U resulting from the externally applied field

U =L [Vt ai )
the conformational free energy is now simply obtained

P, =F—U=—kTL ﬂ/\o + sz;u)] $2() dis

. (48)

Here we have used the normalization of f(é). The force of this method originates from
the fact that the expression in square brackets in (48) is also obtained by substituting
(44) in (43) and may be eliminated,

S = Y [ 00) B = s 2 8@ a2 (9)

where the notation of the second part of this equation is more in line with the rest
of this paper. We have now obtained an expression for S, — independent of the
external field U, (&) — in terms of the angular distribution function f(£2), analogous to
(4) for rods. If we add an interaction term to the free energy we can now proceed
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similarly to the Onsager theory for rods. For illustrative purposes we may use a
gaussian distribution function (10) in (49) to obtain

Seon(@) ~ —1k(L/P)e. (50)

(¢) The isotropic—mematic phase transition

To find the phase transition we need an interaction term besides the conformational
entropy. For rods the second virial term in the free energy scales like N2L2 (cf.
equations (1) and (3)), which implies it is invariant to subdividing the rods into
smaller rods while keeping the total length NL in the system constant. This implies
that there is no need for a long-range correlation between segments as long as the
local interaction is rodlike in character. Therefore, to first order the interaction term
for very stiff wormlike chains is the same as the second virial term for rods

Fouo/NET = cplf]. (51)
For the nematic the total free energy is obtained by combining (50), (51) and (12),
AF"e™ INET ~ const. + (L/P) [3a+cp4/+/ (T)], (52)

where we introduced a new dimensionless concentration
cp=(P/L)c. (52")

We may neglect the translational entropy term Inc, since it is O(P/L) smaller than
the other terms of (52) for the pertinent value of ¢, (see (55) and (56)). Minimizing
expression (52) with respect to o gives

a ~ 4ci, /T, (53)

Note that the concentration dependence is much weaker than for rods (14). A similar
neglect of the logarithmic term in (8) yields

AF°/NET ~ const. + (L/P) cp. (54)

Now, solving coexistence equations (16) and (17) leads to the coexisting con-
centrations (Odijk 1985)
cp =171, c¢p, =971, (55)

with o = 12.43. This low value of « only provides qualitative significance to this
result. More precise values are obtained by numerical calculations (Vroege & Odijk
1988)

¢p;=5.124, c¢p , =5.509. (56)

Because of definition (52’) the transition takes place at a roughly L/P times higher
volume fraction than for rods of the same length. Although it is tempting to view the
chain as built up from L/P effectively rod-like segments, this is not correct. This is
already clear from the non-logarithmic dependence of S, in (50). In the next section
we describe a physically more realistic picture of the nematic state.

(d) The Odujk deflection length
In 1983 Odijk (see also Odijk 1986, 1988) introduced a scaling approach to the
problem of a confined wormlike chain. When we follow a wormlike chain along its
contour it will behave like a free chain as long as there is no external influence either
from a neighbouring chain or from a wall. In this stage expressions like (41) for a free
wormlike chain still apply. At larger length scale, however, the chain will experience
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— A —
Figure 4. A chain in a tube of diameter d is confined by the walls to remain within an angle of about
@ from the axis of the tube. Therefore the typical length scale of fluctuations is given by deflection
length A (see text).

the restriction either because it is forced to remain within a certain angle with the
director or because it cannot penetrate the tube wall. The deflection length A marks
the transition from the free to the constricted régime. It is derived from (41) which
we may Taylor expand for the small angles and distances involved, whence:

(0?5 ~ 2/As|/P 6 <1,|As| < P. (57)

For a nematically constricted chain a typical value for (6%) is given by (22). Therefore,
the length scale A follows from equating both expressions

A~ P/a (nematic confinement). (58)

If we look at a chain confined to a tube we must take the spatial constriction into
consideration. A similar expression to (58) may be derived from the deviation in the
lateral direction. The deflection length is the length scale on which this deviation
equals the tube radius. In figure 4 we sketch a connection between the spatial
deviation and the angular deviation at |As| = A

(62 ~d/A. (59)
Substituting this expression into (57) leads to an expression for A in a tube
A~ diPs  (spatial confinement). (60)

An important conclusion from both (58) and (60) is that the deflection length A is
much smaller than persistence length P for strongly confined chains. At the
deflection points the chain will be obstructed to take a free conformation and will be
deflected towards a more restricted conformation. At the same time the chain will lose
the correlation with its original direction or position. Therefore, the correlation
length for a free chain P is replaced by a much smaller correlation length A.

A scaling analysis for a very long chain gives the confinement free energy by
requiring the free energy to be extensive, i.e. proportional to the total length L which
must be divided by the only relevant length scale left in the problem:

F,, ~kTL/A. (61)

Combining this with the expression (58) for A in the nematic state leads to an
expression

Seon = —Fon/T ~ —k(L/P)a, (62)
which is similar to (50) apart from the numerical factor which appears to be . In the
next sections there will be more indications that A is the dominating length scale of
the problem of confined chains.

(e) The Helfrich method

Another approach to confined elastic cylinders is due to Helfrich and Harbich
(1985) analogous to Helfrich’s theory for the steric repulsion between fluctuating
membranes (the undulation force (Helfrich 1978)). This theory may be formulated
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both for spatial and orientational confinement, which we will discuss in parallel. Here
we restrict the discussion to strongly confined chains with direction vector & almost
parallel to z:

U= (4, 1), (63)

x> Yy
which is the relevant (angular) variable for orientational confinement. For spatial

confinement we must use a spatial variable which we define in terms of displacements
a, and a, orthogonal to the main (z) direction of the chain,

r=(a,,a,,z). (64)
Since 0z/0s & 1 both quantities are related by the usual relation
i = or/0x ~ (Ja,/0s, 0a,,/0s, 1). (65)
The deviations in direction or position may be developed in Fourier series
i, = X, 6% and a,=Xa, e (66)
a q

Substitution in (42) leads to quadratic terms in the free energy for a free chain to
which the equipartition theorem may be applied

SPETG Vil e L= SPRT a1y *ree L) = BET. (67)

Helfrich’s suggestion is that, when the chain is confined, this is causing an increase
of the force constant (proportional to {|a; ,J*)"") by the same amount 7 for each
Fourier mode

1/<|aq,i|2>restr = 1/<|aq,i|2>free+7 (68)
while Odijk (1986) applied the same recipe to the orientational fluctuations
1/<|72q,i|2>restr = 1/<|7’2q,i|2>free+a-' (69)

To fix 7, {|al*) is calculated by summing over the Fourier modes and equated to ud*
with d the tube diameter and 4 a constant somewhat less than 1. This gives

7/L = 1/443d3Ps., (70)

The confinement free energy is obtained from the plausible expression

2 o\
AFcon — %]CT Z In <|aq,i| 2>1restr — lfTILQ. (71)
q,i <|aq,i| >free IuﬁPidi

This is an expression for the confinement free energy similar to (60) and (61). For
orientational confinement this scheme leads to a similar expression, now by relating

2 g, *> to <6%)
q,1

in (22). We then find
AF, , = ikT(L/P)a (72)
analogous to (50).
(f) Computer simulations of a confined wormlike chain

To check the theories for the confinement free energy of a wormlike chain Dijkstra
et al. (1993) simulated a discrete version of this chain in a tube. For the internal
potential energy they took the sum of the bending energies of individual joints

Ua,;,ﬁi_l = (6/25)(0ai,ﬁ,_1)2a (73)
Phil. Trans. R. Soc. Lond. A (1993)
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where [ is the segment length (chosen as the unit of length) and 6, ; is the angle
between adjacent segments. If summed over all chain segments (73) is a discretization
of (42). By devising an appropriate MC sampling scheme they were able to simulate
the confinement free energy by an extension of Widom’s particle-insertion method.
A typical example is L = 512, P = 60 and tube diameter d = 0.60, all measured in
units of segment length. By varying these different parameters the following
expression for the free energy was found

AR, [l T = (2.46 +0.07) L /d~0-66£0.07 p=0.31£0.05 (74)

The linear dependence on L was found for . > 200. The expression found is in good
agreement with (61) and (71), although the prefactor is somewhat different as might
be expected.

(9) Extensions

Recently, Selinger & Bruinsma (1991) devised a more general approach for
infinitely long chains without hairpins, closely related to Helfrich’s theory (Helfrich
& Harbich 1985). Inspired by the importance of the Fourier modes in Helfrich’s
theory, their theory can be viewed as starting from a more general expression for the
mean square deviations

Cla,|*> = 2kT/g(q) (75)
with a, = (e, ,,a, ,). The distribution for each mode is postulated to be gaussian,
hence

pla,) = (g(q)/2nkT) exp (= (9(q)/2kT) |a,|*) (76)

and a functional integration over all modes is implied. Now an expression for the
confinement free energy may be obtained

F,

con L

_L eq"
VT = on dq[lng(q)+g(q)]. (77)

This expression also contains an elastic contribution (from (42)) which represents a
decrease in elastic energy when the chain is confined and therefore less bent.
For the interaction term Selinger & Bruinsma took the expression

Finy/NET & (N/V) L*D{|siny|> exp (—[2nLNV|a]*>]™), (78)

which is equal to (51) in the nematic phase where the chains are orientationally but
not spatially restricted so that <|a|®*) = oco. The last factor represents a primitive
expression for the decrease in excluded-volume interaction for spatially localized
chains with finite {|a]®), like in an hexagonal phase. Both {|siny|> and {|a|®*) in (78)
may be expressed in terms of g(q), so that the total free energy (77) and (78) is a
functional of ¢(q).

Minimizing the free energy leads to the following general form of g(q)

9(q) = 7+ 0q¢* +eq* (79)

with parameters 7 and o which may take the following values:

(@) 7= o = 0. The isotropic state without spatial or orientational order.

(b) 7 =0, o # 0. The nematic state with strongly confined orientations but without
spatial order ({|a|*>) = o0).

(¢) 7#0, o #0. A spatially and orientationally confined state, possibly cor-
responding to an hexagonal state.

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 5. Theoretical phase diagram of semi-flexible chains in terms of the volume fraction of
chains and ratio of diameter and persistence length. Tie lines are shown in the two phase regions.
(After Selinger & Bruinsma 1991.)

Combining cases (@) and (b) with (75) (and applying |&,| = gla,|) leads to expression
(69) if ¢ is given in units £7', so that this more general method leads to Helfrich’s
assumption of mode suppression in the nematic state. Moreover, distribution
function (76) combined with g(q) = o¢®>+ e¢* may be shown equivalent to a gaussian
distribution (10) in 6. Therefore, Selinger & Bruinsma (1991) find an isotropic—
nematic phase transition at exactly the same concentrations as (55). For spatially
confined chains the result found by this method would only be the same as Helfrich’s
(68) if o were 0.

The total phase diagram found by Selinger & Bruinsma is shown in figure 5.
Unfortunately, the hexagonal phase is only formed at a volume fraction above close
packing of the chains, which reflects the inadequacy of a second virial theory to
describe the hexagonal phase. However, choosing a more realistic form for the free
energy could lead to better results.

In formulating such a theory for longer-ranged interactions (like electrostatic) one
must be aware that fluctuations on a deflection length scale may exert a drastic
influence on the effective potential. Odijk (1993) showed that for polyelectrolytes in
an hexagonal state the electrostatic potential for simple rods has to be renormalized
by a potentially large factor exp (2«®d*) with d the mean deviation of the chain from
the hexagonal lattice points.

Finally, although beyond the scope of this qualitative overview, we want to call
attention to the theories for nematic phases of wormlike chains of finite length,
starting from Khokhlov & Semenov (1982) and including several interpolating
theories (Odijk 1986; Hentschke 1990 ; DuPré & Yang 1991 ; Sato & Teramoto 1990).
For comparison with experiments this régime is obviously very important. Another
important extension is the influence of charge (Odijk 1986; Vroege 1989) or
bidispersity (Odijk 1986).

7. Comparison with experiment

Lyotropic liquid crystals occur in a wide variety of dispersions of rodlike colloidal
particles and stiff macromolecules which can be purely synthetic or may be obtained
from biological sources. For an understanding of the experimental results on
lyotropic liquid crystal phase transitions the theories treated in the preceding
sections provide a good framework. In general, however, before a quantitative
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comparison with experimental data can be made, a combination and/or extension of
the theories discussed is needed.

Here we will focus the discussion on a number of systems representative for neutral
and charged rigid rodlike colloids and semi-flexible macromolecules. As far as
possible the systems selected are those with a well-defined size or molecular mass
distribution and known molecular or particle parameters such as length, diameter,
persistence length and charge density. Only for such systems can a meaningful
comparison of experimental and theoretical results be made. The liquid crystal
transition in a number of systems we will discuss later is in fact an iso-
tropic—cholesteric transition. Assuming that the chiral part of the interparticle
interaction that gives rise to a cholesteric rather than a nematic liquid crystal phase
represents only a weak perturbation we will interpret the coexisting concentrations
with theories that refer to the isotropic—nematic transition.

(@) Neutral rigid rodlike colloidal particles

It is only very recently that a stable system of uncharged rigid rodlike colloidal
particles has been prepared: sterically stabilized boehmite rods dispersed in
cyclohexane (Buining et al. 1992). For boehmite rods with an average length of about
200 nm and average aspect ratio of about 20, Buining (1992) found that the biphasic
region lies between volume fractions ¢, = 3.8 % and ¢, = 14.6 %. The concentrations
of the coexisting isotropic and nematic phase change with the overall concentration.
The rather low volume fraction ¢,, the large width of the biphasic region and the
observed variation of the concentrations of the coexisting phases are clearly related
to the polydispersity of the boehmite particles. Representing the polydisperse system
by a bidisperse system, the experimentally observed features of the isotropic—
nematic transition can be explained, at least qualitatively, with the simple
theory outlined in §3a. After several months a second, less concentrated, nematic
phase is formed between the isotropic and the original nematic phase. This again may
explained by the polydispersity of the particles assuming that the sample contains
rods of sufficiently different lengths to exceed the minimum length ratio necessary for
the appearance of a second nematic phase.

(b) Charged rigid rodlike colloidal particles

Liquid crystal phases have been observed in a variety of aqueous dispersions of
charged rodlike colloidal particles. The most widely investigated and also the best
characterized system in this category is tobacco mosaic virus (TMV). TMV is a
cylindrical particle, consisting of a rigid protein shell enclosing double stranded
RNA, with a length L = 300 nm and a diameter D = 18 nm. The charge density of
tobacco mosaic virus depends on pH. Near neutral pH the charge density is believed
to be —1le to —2e per protein subunit which corresponds to a linear charge density
of —7e to — 14e per nanometre. This seemingly large uncertainty has little effect on
the calculations of the phase boundaries because the electrostatic interaction
between two highly charged long rods is rather insensitive to the precise value of the
linear charge density owing to the nonlinear screening effect of the counterions.

Recently, Fraden et al. (1989) measured the coexisting isotropic and nematic
concentrations over a wide range of ionic strength (see figure 6). They found a strong
ionic strength dependence of the isotropic-nematic phase boundaries, which clearly
demonstrates that the electrostatic repulsion is an important factor in the phase
behaviour of the system. The theoretical results obtained with the Onsager theory
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Figure 7
Figure 6 0.2+ crystalline ____-
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Figure 6. Comparison of the experimental concentrations of coexisting isotropic (o) and nematic
phases (o) of TMV dispersions as a function of ionic strength (Fraden et al. 1989) with theoretical
results (solid curves, Sato & Teramoto 1991).

Figure 7. Tentative phase diagram of TMV dispersions as a function of salt concentration (after
Wen 1989).

including the effect of screened Coulomb interactions (see §4) lie considerably above
the experimental values. This is not surprising as the hard-rod dimensions of TMV
give a ratio L /D ~ 17, which is certainly not large enough for the Onsager approach
to be quantitatively valid. Indeed Sato & Teramoto (1991) going beyond the second
virial approximation for the hard core part obtained much better agreement.

In 1950 Oster reported layerlike ordering in dispersions of TMV in the form of an
‘iridescent’ gel, which separated from a salt-free cholesteric phase. The periodicity
of 340 nm determined by Oster is close to the TMV length of 300 nm which points to
a structure formed by layers of TMV oriented perpendicular to the scattering planes.
Similar results were found by Kreibig & Wetter (1980) in an optical diffraction study
of a number of different (tobacco) mosaic viruses. X-ray measurements by Fraden et
al. (1982) showed that the iridescent phase of TMV in salt-free water is either truly
colloidal crystalline or smectic B (with order within each layer but no registry of the
ordering between consecutive layers). More recently, Wen et al. (1989) using a
combination of optical and X-ray diffraction demonstrated that under conditions of
high salt a smectic-A phase was formed, coexisting with a crystalline phase at higher
volume fractions. In unbuffered solutions only a colloidal crystal was observed
besides isotropic and nematic phases. This leads to the tentative phase diagram of
figure 7 (after Wen 1989). Note that whereas one might interpret the effect of a
decrease of the electrolyte concentration as a lowering of the effective (/D) ratio,
the resulting phase diagram cannot be mapped on the hard spherocylinder diagram
(Veerman & Frenkel 1990). Lowering of the (I./D) ratio in the latter case first results
in the loss of stability of the nematic phase and only for still lower values of (L/D)
the smectic phase disappears. Apparently the effect of long-range electrostatic
repulsion between the particles is a relative destabilization of the smectic phase with
respect to the competing nematic and crystal phase.

(c) Neutral semi-flexible polymers

A well-characterized neutral semi-flexible polymer is Schizophyllan in water.
Schizophyllan is a triple-helical polysaccharide with a diameter D = 1.7 nm and
persistence length P = 200 nm. The liquid crystal phase behaviour of Schizophyllan
in water has been studied extensively by Teramoto and coworkers (Van & Teramoto
1982; Itou & Teramoto 1984a, b; Kojima et al. 1987) using samples with molecular
masses varying from 65800 and 800000 which corresponds with contour lengths
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Figure 8
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Figure 8. Comparison of the experimental concentrations of coexisting isotropic (o) and nematic
(m) phases of aqueous solutions of Schizophyllan with different molecular weights (Itou &
Teramoto 1988) with theoretical results (dashed and solid curves, Odijk 1986). , . P/D;
———, $,P/D.

Figure 9. Comparison of experimental concentrations of coexisting isotropic (o) and nematic (e)
phases of aqueous solutions of Xanthane (M = 614 x 10?) as a function of salt concentration (Sato
et al. 1990) with theoretical results (solid curves, Sato & Teramoto 1991).

L = 30-370 nm. This means that the number of persistence length units N, = L/P
within each chain varies from 0.15 to 1.85. This implies that neither the results for
the rigid rod limit (P > L » D) nor those for the semi-flexible limit (L > P > D) are
valid. In figure 8 we compare the measured isotropicnematic (cholesteric)
coexistence concentrations with the values calculated with the interpolating formulae
for intermediate values of NV, given by Odijk (1986). The overall agreement between
theory and experiment is satisfactory, although the width of the biphasic gap is
experimentally much larger than predicted by theory.

Teramoto and coworkers (Itou & Teramoto 1984a, b, 1988; Kojima et al. 1987;
Sato et al. 1989) have also studied bidisperse systems of Schizophyllan with different
molecular mass ratios. Only for a molecular mass ratio as high as 12 (M, = 68.500,
M, = 800.000) there is a three-phase region in which an isotropic phase coexists with
two nematic (cholesteric) phases as well as a biphasic region where two nematic
(cholesteric) phases coexist. As we saw in §3a this kind of behaviour has been
predicted for bidisperse systems of rigid rods when the length ratio exceeds 3.2.
From the experimental data it is clear that in the case of wormlike chains the
minimum length ratio for the occurrence of two nematic phases is considerably
higher. This is supported by recent theoretical results of Teramoto (personal
communication).

(d) Semi-flexible polyelectrolytes

Polyelectrolytes show good solubility in water. These systems can therefore be
studied over an extensive concentration range. Again the limitation is that for a
meaningful comparison with theory the systems must be monodisperse and —in
addition to the usual parameters L, D and P — the (linear) charge density v of the
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polyelectrolyte and the salt concentration in water must be known. A well
characterized stiff polyelectrolyte is Xanthan. Under certain conditions Xanthan is
a double-helical polysaccharide with a diameter D = 2.2 nm, a persistence length
P =120 nm and a linear charge density of —3e per nanometre. The liquid crystal
phase behaviour of Xanthan in water has again been studied extensively by
Teramoto and coworkers (Sato et al. 1990 ; Inatomi et al. 1992) using samples with
molecular mass varying from 110.000 to 980.000 (L = 55-500 nm) and salt
concentrations between 0.005 M and 1 M. The experimental data on these systems
have been analysed by Sato & Teramoto (1991) using the theory of Stroobants et al.
(1986), discussed in §4, as modified to wormlike chains by Odijk (1986) and
incorporating end effects in the electrostatic interaction. The agreement between
theory and experiment is quite good (figure 9).

In addition to a nematic liquid crystal phase a columnar liquid crystal phase has
been reported for Xanthan (Livolant & Bouligand 1986).

8. Concluding remarks

After nearly 50 years Onsager’s explanation of the formation of a nematic phase
—a loss of orientational entropy compensated by a gain in free volume — remains
unassailed, while its extension by Khokhlov & Semenov to semi-flexible chains by
inclusion of the configurational entropy has considerably widened the range of the
theory in terms of applicability to experiments. Looking back upon the preceding
section we may conclude that there exists a considerable amount of experimental
material on well-characterized systems which can be described (semi) quantitatively
with the Onsager theory and its extensions.

Although there are a number of theoretical issues regarding the isotropic-nematic
phase transition which require further attention, notably the role of attractive
forces, it seems fair to say that the main challenges are offered by the more highly
ordered phases, such as the smectic and hexagonal phase. For hard core systems the
trend was set by computer simulations followed by density functional theory.
However, for charged rodlike particles no such results are available. The observed
phase behaviour of TMV which differs qualitatively from hard rods certainly
warrants such efforts.

Another question which deserves attention is why rigid rodlike particles undergo
nematic—smectic phase transitions, whereas semi-flexible chains show nematic—
hexagonal phase transitions. The theory of Selinger & Bruinsma (1991) indicates
that infinitely long semi-flexible chains indeed undergo a nematic-hexagonal phase
transition, albeit at an unphysical density (larger than close packing). However, it
would be interesting to have a theory that can handle short semi-flexible chains (say
L/P around 1) with or without electrostatic interactions as well. Only then can we
hope to understand the rich but complicated phase behaviour that has been observed
in concentrated solutions of persistence length fragments of DNA (Rill e al. 1983,
1991; Rill 1986; Strzelecka & Rill 1987, 1990 ; Strzelecka et al. 1988 ; Livolant et al.
1989 ; Durand et al. 1992).

We thank Ms Marina Uit de Bulten and Ms Toni Vos for their accurate preparation of the
typescript and Mr Jan den Boesterd for preparing the figures.
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